Management Algorithm for Interrupting Mother to Child Transmission of Hepatitis B Virus

Jinlin Hou, Fuqiang Cui, Yang Ding, Xiaoguang Dou, Zhongping Duan, Guorong Han, Jidong Jia, Qing Mao, Jie Li, Zengde Li, Zhihua Liu, Lai Wei, Qing Xie, Xizhong Yang, Hua Zhang, Hui Zhuang

PII: S1542-3565(18)31090-5
DOI: 10.1016/j.cgh.2018.10.007
Reference: YJCGH 56129

To appear in: Clinical Gastroenterology and Hepatology
Accepted Date: 2 October 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Title: Management Algorithm for Interrupting Mother to Child Transmission of Hepatitis B Virus

Short title: Algorithm for Interrupting MTCT of HBV

Authors:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jinlin Hou</td>
<td>Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China</td>
</tr>
<tr>
<td>Fuqiang Cui</td>
<td>School of Public Health, Peking University, Beijing, China</td>
</tr>
<tr>
<td>Yang Ding</td>
<td>Department of Infectious Diseases, Shengjing Hospital, China Medical University, Shenyang, China</td>
</tr>
<tr>
<td>Xiaoguang Dou</td>
<td>Department of Infectious Diseases, Shengjing Hospital, China Medical University, Shenyang, China</td>
</tr>
<tr>
<td>Zhongping Duan</td>
<td>Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, China</td>
</tr>
<tr>
<td>Guorong Han</td>
<td>Department of Gynecology and Obstetrics, The Second Affiliated Hospital of the Southeast University, Nanjing, China</td>
</tr>
<tr>
<td>Jidong Jia</td>
<td>Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Qing Mao</td>
<td>Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China</td>
</tr>
<tr>
<td>Jie Li</td>
<td>School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China</td>
</tr>
<tr>
<td>Zengde Li</td>
<td>China Foundation for Hepatitis Prevention and Control, Beijing, China</td>
</tr>
<tr>
<td>Zhihua Liu</td>
<td>Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China</td>
</tr>
<tr>
<td>Lai Wei</td>
<td>Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China</td>
</tr>
<tr>
<td>Qing Xie</td>
<td>Department of Infectious Diseases, Ruijin Hospital, Shanghai, China</td>
</tr>
<tr>
<td>Xizhong Yang</td>
<td>China Foundation for Hepatitis Prevention and Control, Beijing, China</td>
</tr>
<tr>
<td>Hua Zhang</td>
<td>Department of Gynecology and Obstetrics, Beijing Youan Hospital, Capital Medical University, Beijing, China</td>
</tr>
<tr>
<td>Hui Zhuang</td>
<td>School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China</td>
</tr>
</tbody>
</table>
Correspondence:

Dr. Jinlin Hou

Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

E-mail address: jlhousmu@163.com
Phone: 86-20-616141941
Fax: 86-20-616141941

Grant support:

1. Chinese National Research Grant of the Thirteenth Five-Year Plan for the Key Projects in Infectious Diseases (grant no. 2017ZX10201201).
2. Guangzhou Science and Technology Project (grant no. 201604020010).

Abbreviations:

MTCT, mother to child transmission; HBV, hepatitis B virus; WHO, World Health Organization; HBIG, hepatitis B immune globulin; AASLD, American Association for the Study of Liver Diseases; EASL, European Association for the Study of the Liver; APASL, Asian Pacific Association for the Study of the Liver; TDF, tenofovir disoproxil fumarate; LdT, telbivudine; HBsAg, hepatitis B surface antigen; anti-HBs, antibody to hepatitis B surface antigen; HBeAg, hepatitis B e antigen; anti-HBe, antibody to hepatitis B e antigen;
anti-HBc, antibody to hepatitis B core antigen; ULN, upper limit of normal; ALT, alanine aminotransferase; PCR, polymerase chain reaction; PVST, post-vaccination serologic testing; CHB, chronic hepatitis B; AFP, alpha-fetoprotein.

Disclosures:

Jinlin Hou is a consultant for AbbVie, Arbutus, Bristol Myers Squibb, Gilead Sciences, Johnson & Johnson, and Roche and received grants from Bristol Myers Squibb and Johnson & Johnson. The remaining authors have nothing to disclose.

Author’s contributions:

Jinlin Hou is responsible for the design and concept of the manuscript. All authors contributed to the writing and proofreading of the final manuscript.

Word count: 219 in abstract, 4806 in full text (including abstract and reference)

Acknowledgement

We would like to thank Dr. Po-Lin Chan and Dr. Calvin Pan for their professional comments. We are grateful to Dr. Xueru Yin for her contribution in the proofreading and revision of the manuscript.
Manuscript Number: CGH 18-01243

Title: Management Algorithm for Interrupting Mother to Child Transmission of Hepatitis B Virus

Abstract: In areas where hepatitis B virus (HBV) is endemic, mother to child transmission (MTCT) is the major route of infection of children. Blocking MTCT of HBV would therefore reduce its prevalence. The China Foundation of Hepatitis Prevention and Control organized a team of specialists in infectious diseases, hepatology, immunology, obstetrics, and public health to develop an algorithm for interrupting MTCT of HBV, based on the most recent hepatitis B guidelines and latest evidence. This algorithm comprises 10 steps and has been adopted in clinical practice in China. Four aspects (screening, antiviral intervention during pregnancy, immunoprophylaxis, and post-vaccination serologic testing) are the core components of preventing MTCT. Although the combination of passive and active immunization in newborns of HBsAg-positive mothers reduces MTCT of HBV, this immunoprophylaxis cannot completely eradicate MTCT. In the past decade, administration of antiviral agents to pregnant women has been shown to be safe and effective in reducing MTCT of HBV in combination with immunoprophylaxis. Aiming to achieve zero MTCT, this algorithm recommends the use of antivirals during pregnancy by women with high viral loads. Preventing MTCT is key to achieving the goal of eliminating HBV as a public health threat by 2030. Implementation and enhancement of the standardized algorithm for pregnant women with chronic HBV infection and their infants is urgently needed to prevent
MTCT.

KEY WORDS: CFHPC, neonate, vaccine, antiviral therapy

Introduction

The World Health Organization (WHO) has set the goal of eliminating hepatitis as a threat to public health by 2030, which includes reducing the prevalence of hepatitis B surface antigen (HBsAg) among children to 0.1%.1 Mother to child transmission (MTCT) is the major route of hepatitis B virus (HBV) transmission, accounting for 40%-50% of chronic infections worldwide.2 Therefore, blocking MTCT of HBV will be the key step in achieving this goal.

The mainstay of preventing hepatitis B acquisition at birth comprises at least 3 doses of hepatitis B vaccine, including a birth dose administered in a timely manner, i.e., within 24 hours of birth.3 Active-passive immunoprophylaxis through use of hepatitis B immune globulin (HBIG) is recommended among infants born to women with chronic HBV infection.4 Although recent studies suggest that vaccine alone may be as effective as the combination of vaccine and HBIG in preventing infection among neonates born to HBsAg-positive/Hepatitis B e antigen (HBeAg) -negative women, the current standard recommendations include the use of HBIG for the prevention of MTCT.5,6 Known factors that increase the risk of MTCT include HBeAg positivity, high viral load among pregnant women, and instrumental deliveries at birth.7-9
In the last two decades, multiple studies have documented the use of telbivudine (LdT) or tenofovir disoproxil fumarate (TDF) in reducing the risk of HBV MTCT. A systematic review suggested that antiviral therapy, compared to the administration of HBIG and vaccination, improved HBV suppression and reduced MTCT in women with a high viral load.\(^{10}\) Other studies noted the demonstrated effectiveness of antiviral therapy during the late stage of pregnancy in preventing MTCT among women with a high viral load.\(^{11-15}\) However, there remains uncertainty regarding the effect of antiviral drug use, as a recent multicenter, randomized, double-blinded clinical trial conducted in Thailand by Jourdain et al.\(^{16}\) did not show a significant difference in MTCT rate between the intervention and control arms.

Several sets of guidelines, including those of the American Association for the Study of Liver Diseases (AASLD),\(^{17}\) the European Association for the Study of the Liver (EASL),\(^{18}\) and the Asian Pacific Association for the Study of the Liver (APASL),\(^{19}\) and National Institute for Health and Care Excellence (NICE)\(^{20}\) recommend consideration of antiviral use among pregnant women with chronic HBV infection. The 2015 WHO guidelines for the treatment of hepatitis B do not formally recommend the use of antiviral agents for the prevention of MTCT due to the limited quantity and low quality of supporting evidence, comparison of antivirals, evaluation of potential harms, real-world studies and programmatic implications based on the GRADE review used by the WHO.\(^{21}\)

In China, various practices of antiviral drug use are implemented to prevent HBV MTCT.
To harmonize and standardize clinical management to prevent MTCT of hepatitis B, several meetings were coordinated by the China Foundation for Hepatitis Prevention and Control (CFHPC), bringing together experts from across the country in infectious diseases, hepatology, immunology, obstetrics and public health (the “Group”) to design a consensus protocol for clinical practice based on reviewing major international and Chinese guidelines and current global evidence.

The practice protocol for the care of HBsAg-positive pregnant women and their infants is as follows:

1. **Testing and diagnosis**

Following the current national recommendations of the National Health Committee, all pregnant women should be screened for hepatitis B, syphilis, and HIV at the first prenatal examination and/or as early as possible during antenatal care. The Group recommends that the HBV serologic marker HBsAg be tested as part of the screening. If test result for HBsAg is negative, women should be counselled regarding their result and receive the usual standard of care for pregnant women. If the HBsAg test is positive, which indicates maternal HBV infection, the whole set of HBV serologic markers should be tested to assess the status of HBV infection. HBsAg-positive pregnant women should be jointly managed by an obstetrician for the well-being of the fetuses and women and by a hepatologist/gastroenterologist or infectious disease specialist for their hepatitis disease.
status during pregnancy, labor, delivery and the postpartum period. Continued follow-up after delivery will be required.

2. Initial assessment (baseline) and management decisions

The Group recommends staging of liver disease status for HBsAg-positive pregnant women to determine the degree of liver injury. Baseline tests include maternal HBV viral load (HBV DNA), HBV serologic markers, liver function tests, and upper abdominal ultrasound. Management decisions should consider the following:

2.1 In HBeAg-positive pregnant women with HBV DNA >20,000 IU/mL or HBeAg-negative pregnant women with HBV DNA >2,000 IU/mL and significant hepatic activity, alanine aminotransferase (ALT) ≥5× upper limit of normal (ULN) (excluding other potential etiologies), or liver cirrhosis, the consideration in starting antiviral therapy is the woman’s health. The drug of choice is TDF, which should be prescribed after clinical assessment, counselling, patient’s education and receipt of informed consent by specialists in hepatology or infectious diseases. The decision to start antiviral treatment and the plan for patient management should be communicated to the obstetric team.

2.2 In pregnant women with HBV DNA positive and having ALT levels ≥2 but <5×ULN, antiviral therapy can be postponed. Close monitoring based on clinical symptoms and serology is required throughout pregnancy. The Group recommends, at minimum, liver function monitoring every four weeks during pregnancy. If ALT increases to ≥5×ULN,
treatment decisions should follow point 2.1; if ALT reduces to <2×ULN, treatment management should follow point 2.3; if ALT remains within the range of ≥2 to <5×ULN, clinicians should consider starting antiviral treatment at gestational week 24 using TDF after patient’s education and obtaining informed consent.

2.3 In pregnant women found to have viremia, ALT <2×ULN, and no cirrhosis, there is no indication to initiate antiviral therapy. Clinical and liver function monitoring is recommended. If there are signs of progression of liver disease (that is, ALT ≥2×ULN) during the course of the pregnancy, treatment considerations should follow point 2.1 or 2.2 accordingly. In addition, total bilirubin and prothrombin activity should be tested to evaluate the severity of liver disease.

3. Management during pregnancy

In pregnant women with normal or slightly elevated ALT, HBV DNA should be quantified with the sensitive method of real-time polymerase chain reaction (PCR) in the second trimester. For the prevention of HBV MTCT, antiviral treatment should be considered based on HBV DNA quantification.

3.1 If HBV DNA is above 2×10⁶ IU/mL, antiviral treatment with either TDF or LdT (A1)¹¹-¹⁵ should be administered after patient education and informed consent at gestational week 24-28. The risks and benefits and the limited evidence for this approach should be discussed with the patient. The benefit of antiviral treatment is to protect the newborns from
HBV infection and to control hepatitis activity in mothers with elevated ALT. It has been reported that the rate of MTCT can be further decreased by antiviral treatment in HBsAg-positive mothers during late pregnancy.11-15 At the same time, the patients should be informed about potential risks related to the administration of antivirals, such as side effects of drugs (renal injury, hypophosphatemia, myopathy), drug-resistant mutations, potential harm to the fetus, and postpartum hepatic flare. Generally, pregnancy category B drugs such as TDF and LdT are safe to use during pregnancy, and antiviral treatment with TDF or LdT has no influence on congenital abnormalities or neonatal growth percentiles. However, it should be noted that, in an HIV/AIDS cohort study,24 in utero exposure to TDF resulted in a 12\% reduction in total mean whole-body bone mineral content (56.0 g vs 63.8 g; \textit{P}=.002). Moreover, the rate of postpartum hepatic flare was reported to be 40\%-50\% in mothers who stopped antiviral treatment.25

Accumulating studies have demonstrated that treatment using TDF or LdT during the third trimester is effective and safe for the prevention of MTCT in mothers with high viral loads,11-15 and this approach has been recommended by major guidelines.17-20,23 Although Jourdain’s study in Thailand did not demonstrate a statistically significant benefit of TDF treatment over a placebo control, the findings might not be generalizable to other countries. Given the potentially insufficient sample size and relatively high rate of loss to follow-up in the study, the difference between the TDF (0\%) and placebo (2\%) arms could hardly be differentiated. In pregnant women with very high baseline viral loads ($\geq1 \times 10^8$ IU/mL),
earlier initiation of antiviral therapy may be necessary to achieve viral suppression below the recommended threshold.26 Before delivery, HBV DNA quantification should be repeated to evaluate the efficacy of antiviral therapy and the risk of MTCT.

3.2 If the HBV DNA level is $\leq 2 \times 10^6$ IU/mL, antiviral therapy is not recommended.23 Considering that the threshold of antiviral therapy to prevent MTCT is variable among current guidelines (Table 1) and MTCT may still occur in pregnant women with lower HBV DNA levels, options for antiviral therapy should be provided to those with HBV DNA $\leq 2 \times 10^6$ IU/mL and high-risk factors for MTCT, such as history of MTCT, threatened abortion, threatened premature labor, and indications of invasive procedures, after thorough evaluation and discussion.

4. Delivery management

4.1 Mode of delivery: The mode of delivery should follow the usual obstetric indications. Routine cesarean section is not recommended for the prevention of HBV transmission. There is no clear and strong evidence to support cesarean section as the mode of choice for preventing MTCT of HBV. Among cases of HBV MTCT, a large proportion occur around labor and delivery, particularly with risk factors including high maternal viremia, transfusion of the mother’s blood to the fetus during labor contractions, infection after rupture of membranes and direct contact of the fetus with infected secretions or blood from the maternal genital tract. At the time of delivery, clinical assessment of HBV-infected
pregnant women should include the liver function status. With consideration for the safety of the fetus, procedures that break the skin and mucosal barrier should be avoided as much as possible, including fetal scalp electrodes, fetal scalp blood sampling and vigorous suctioning of the newborn’s airway at birth. Instrumental delivery, such as the use of vacuum extraction and forceps to expedite delivery during the second stage of labor, should follow obstetric indications. There is a small risk of traumatizing the fetal skin and risking transmission of HBV to the infant.

4.2 Care of the newborn: Standard precautions should continue when handling the newborn. Visible blood, mucus, and amniotic fluid on the surface of the neonate and the cord should be gently wiped off. Standard procedures for cord cutting should be followed. Immunoprophylaxis to be delivered at birth, including the hepatitis B vaccine and HBIG, should be provided. The skin at the injection site should be cleaned with an alcohol swab before the injection is administered.

5. Discontinuation of antivirals

For pregnant women who have normal ALT levels and receive antiviral therapy to prevent MTCT during pregnancy, drugs can be discontinued immediately after delivery (B2). Close monitoring of maternal ALT is warranted after withdrawal of antivirals because postpartum hepatitis may occur. The details of follow-up are described in section 10.2.

The appropriate time to discontinue antivirals is still controversial among current guidelines.
because there is not sufficient evidence on this issue. In most studies on antiviral therapy during pregnancy to prevent MTCT, maternal antiviral therapy was discontinued at 1-3 months after delivery to avoid ALT flares. Based on these studies, the EASL guidelines recommend that antiviral therapy be stopped up to 12 weeks after delivery for pregnant women who receive antivirals to prevent MTCT. However, extension of antiviral therapy for several weeks or months has not been shown to significantly prevent the occurrence of postpartum hepatitis flare. Therefore, the Chinese Medical Association guidelines suggest that maternal antiviral therapy can be discontinued at delivery and that regular monitoring of the ALT should be performed to detect postpartum hepatitis flares. It was reported that ALT flares occurred more frequently in mothers who had previously taken TDF than in those who had not received TDF (45% vs 30%). Although postpartum hepatitis is often mild in severity and is usually resolved spontaneously, severe ALT flares were observed in approximately 5% of mothers after discontinuation of antivirals. Care should be taken to address the possibility of severe hepatitis, even fulminant hepatitis. As the existing evidence is limited and insufficient, well-designed studies are needed to ascertain the appropriate time to stop antiviral therapy.

For pregnant women who experience hepatitis flares and start antiviral therapy for their hepatitis, antiviral treatment should not be stopped after delivery. Such women should continue treatment for hepatitis under the direction of hepatologists/gastroenterologists or infectious disease specialists. The details of follow-up are described in section 10.1.
Discontinuation of the antiviral therapy can be considered following the recommendations in the Chinese Guideline of Prevention and Treatment of Chronic Hepatitis B (2015 Version).

6. Neonatal immunoprophylaxis

6.1 Within 12 hours after delivery, preferably as soon as possible, HBIG 100 IU should be administered intramuscularly in the anterolateral thigh or deltoid muscle (A1). A prospective cohort study in China showed that one birth dose of 100 IU combined with the three-dose hepatitis B vaccine series would be sufficient to prevent MTCT of HBV in infants born to HBeAg-positive mothers.

6.2 At the same time, the first dose of the recombinant yeast hepatitis B vaccine (10 µg/0.5 mL) should be administered in the anterolateral thigh or deltoid muscle on the opposite side of the body. The other two doses of 10 µg/0.5 mL hepatitis B vaccine are scheduled at 1 and 6 months of age following the national Chinese vaccination schedule (A1).

Timely administration of HBIG and hepatitis B vaccine is critical for interrupting MTCT. The Centers for Disease Control and Prevention (CDC) recommend that the birth dose of HBIG and hepatitis B vaccine be given within 12 hours after birth. Any delay beyond 48 hours in the administration of HBIG has a significant impact on the rate of MTCT. Timely administration of the first dose of hepatitis B vaccine can provide early postexposure protection and enhance compliance in completing the vaccination series.
6.3 A delayed vaccination schedule is also possible. If the originally scheduled second dose of the hepatitis B vaccine is missed by up to 3 months, this dose should be injected as soon as possible, and the third dose of vaccine should be provided at 6 months. If, however, the second dose is delayed by more than 3 months from the planned visit, the dose should be given as soon as possible, and the third dose should be scheduled for 2 months later.

6.4 For preterm and low-birth-weight infants (<2000 g), HBIG 100 IU plus hepatitis B vaccine (10 µg/0.5 mL) should be administered within 12 hours, with 3 subsequent doses of vaccine (10 µg/0.5 mL each) scheduled at 1, 2 and 7 months of age. Infants with unknown maternal HBsAg status should be treated as infants born to HBsAg-positive mothers. Those children’s mothers should be tested for HBsAg as soon as possible. If the mother is HBsAg negative, the three doses of vaccine can be started at 1 month of age or postponed until just before hospital discharge. The vaccination scheme should still be administered according to the 0-1-6 schedule.

7. Breastfeeding

7.1 Mothers who were not treated with antivirals during pregnancy are encouraged to breastfeed if their newborns have received combined immunoprophylaxis composed of HBIG and hepatitis B vaccine (B1). If a postpartum hepatitis flare occurs during breastfeeding, mothers can be managed according to the Chinese Guideline of Prevention and Treatment of Chronic Hepatitis B (2015 version).²³
7.2 For mothers on antiviral treatment for prevention of MTCT, the antiviral treatment can be discontinued after delivery, and breastfeeding can then be allowed if the newborns have received combined immunoprophylaxis.

7.3 If mothers receive antivirals to treat CHB and continue the treatment after delivery, breastfeeding is not contraindicated (C2). It has been reported that, in the breast milk of TDF-treated mothers, the drug is present only at low concentrations, and its oral bioavailability is limited; thus, infants are exposed to only a minuscule amount of TDF.30

8. Follow-up of infants

Infants born to HBsAg-positive mothers should be followed up for completion of hepatitis B vaccination and post-vaccination serologic testing (PVST). PVST is important for evaluating the effect of hepatitis B immunization and identifying HBV infection in infants. WHO and the CDC27 recommend PVST for infants born to HBV-infected women. PVST should be performed after completion of the hepatitis B vaccine series and at least 1 month after the last hepatitis B vaccine dose. Because of possible interference of the HBIG injection at birth and a decline in anti-HBs, PVST should not be performed before completion of hepatitis B vaccination or after 12 months of age. It was reported that the highest anti-HBs level was observed in infants whose PVST was performed 1-2 months after the 3rd dose of hepatitis B vaccine, and the anti-HBs level was substantially greater among infants tested at 7-12 months of age than among those tested at 13-24 months of age.
The assessment of PVST is described, along with corresponding measures, in the following section.

9. Assessment of PVST for HBV-exposed infants

PVST examines two markers, namely, HBsAg and anti-HBs (antibody levels), which allow clinicians to determine whether an infant is immune and protected, infected, or uninfected and nonimmune. Quantification of anti-HBs antibody levels will help clinicians determine whether an infant is protected; the threshold of protection is defined as ≥ 10 mIU/mL.

9.1 HBsAg-positive infants should be referred for appropriate clinical care and follow-up and their parents counselled.

9.2 HBsAg-negative infants with anti-HBs ≥ 100 mIU/mL are protected against hepatitis B and do not require further medical management.

9.3 HBsAg-negative infants with anti-HBs <10 mIU/mL should have their HBV DNA levels tested to rule out the possibility of occult HBV infection. If HBV DNA is undetectable, these infants should be revaccinated with a further three doses of hepatitis B vaccine (10 µg/0.5 mL) and undergo PVST 1-2 months after the final vaccine.

9.4 An anti-HBs antibody level of ≥ 100 mIU/mL indicates a good immune response with protective immunity, while an antibody level of less than 10 mIU/mL indicates no significant response or immunity. An antibody level of $10-<100$ mIU/mL following
vaccination indicates low response.

Among infants born to HBsAg+ mothers, the rate of non/low response to hepatitis B vaccine was reported to be 22.4% -30.2%, compared to 5%-10% in general infant’s population. The risk factors of non/low response to hepatitis B vaccine include high HBV DNA level, premature labor, low birth weight, type of hepatitis B vaccine etc. Several studies showed that additional doses of hepatitis B vaccine could induce robust anti-HBs response in most of low-responding infants. Additional single dose of 10 µg hepatitis B vaccine should be administrated to low-responding infants, given the immune response of low-responding infants might be unstable and the potential risk of horizontal infection still exist under the circumstance of close contact between mother and infant. Further studies are needed to investigate the effectiveness of booster dose for low-responding infants.

10. Follow-up of mothers after delivery

10.1 Mothers on antiviral treatment after delivery should be followed up according to the protocol for general CHB patients. Liver function and HBV DNA should be checked every 3 months. HBV serology, alpha-fetoprotein (AFP) tests, abdominal ultrasound, and transient elastography should be performed at 6-month intervals.

10.2 Liver function and HBV DNA should be checked at 6-8 weeks postpartum in mothers who discontinue antivirals after delivery. If liver function is normal, monitoring should be
continued at intervals of 3-6 months. If liver function is abnormal at 6-8 weeks after delivery, patients should be managed following the recommendations in the Chinese Guideline of Prevention and Treatment of Chronic Hepatitis B (2015 updated version).23

10.3 Mothers not on antiviral treatment may experience ALT flares or exacerbation after delivery. Liver function should be monitored at postpartum weeks 3-4 and 9-12, especially in mothers with elevated ALT and detectable HBV DNA levels at delivery.40

Practice considerations

Prevention of new infections of hepatitis B among infants is key to ensuring a generation free of hepatitis B. The current standards of care for HBV prevention, i.e., 3 vaccines and HBIG, are highly effective, and additional interventions should be considered for HBV-infected women who are HBeAg positive and/or have high viral loads. In the implementation of these clinical practice protocols, physicians and the team caring for the well-being of the pregnant women and her fetus should establish good communication for multidisciplinary care. Local hospital protocols should be established to provide a reliable patient clinical pathway between hospital departments in order to ensure seamless care and good patient education.
References

13. Pan CQ, Duan Z, Dai E, et al. China Study Group for the

Table 1. Recommendations for antiviral intervention to prevent mother-to-child transmission in pregnant women with chronic HBV infection

<table>
<thead>
<tr>
<th>Societies</th>
<th>Threshold of HBV DNA</th>
<th>Initiation time</th>
<th>Cessation time</th>
<th>Antivirals</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASLD (2018)</td>
<td>>2×10^5 IU/mL</td>
<td>28-32 weeks</td>
<td>At birth to 3 months</td>
<td>TDF</td>
<td>17</td>
</tr>
<tr>
<td>EASL (2017)</td>
<td>>2×10^5 IU/mL</td>
<td>24-28 weeks</td>
<td>Up to 12 weeks after delivery</td>
<td>TDF</td>
<td>18</td>
</tr>
<tr>
<td>APASL (2015)</td>
<td>>6-7 log_{10} IU/mL</td>
<td>28-32 weeks</td>
<td>At delivery</td>
<td>TDF LdT</td>
<td>19</td>
</tr>
<tr>
<td>CMA (2015)</td>
<td>>2×10^6 IU/mL</td>
<td>24-28 weeks</td>
<td>At delivery</td>
<td>TDF LdT LAM</td>
<td>23</td>
</tr>
<tr>
<td>NICE (2013)</td>
<td>>10^7 IU/mL</td>
<td>The third trimester</td>
<td>4 to 12 weeks after birth</td>
<td>TDF</td>
<td>20</td>
</tr>
</tbody>
</table>

HBV, hepatitis B virus; CMA, Chinese Medical Association; APASL, Asian Pacific Association for the Study of the Liver; EASL, European Association for the Study of the Liver; AASLD, American Association for the Study of Liver Diseases; NICE, National Institute for Health and Care Excellence; TDF, tenofovir disoproxil fumarate; LdT, telbivudine; LAM, lamivudine
Supplement 1
Grading of evidence and recommendations

<table>
<thead>
<tr>
<th>Grade of evidence</th>
<th>Notes</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>High quality</td>
<td>Meta-analysis or randomized, controlled trials</td>
<td>A</td>
</tr>
<tr>
<td>Moderate quality</td>
<td>Controlled trials without randomization</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Cohort or case-control analytical studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple time series</td>
<td></td>
</tr>
<tr>
<td>Low quality</td>
<td>Opinions of experts; descriptive epidemiology</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade of recommendation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Factors influencing the strength of the recommendation include the quality of the evidence, presumed patient-important outcomes, and cost.</td>
</tr>
<tr>
<td>Weaker</td>
<td>With more variability in preferences and values or greater uncertainty, a weak recommendation is more likely to be warranted. Recommendations with higher costs or resource consumption are also made with less certainty.</td>
</tr>
</tbody>
</table>
Legend

Figure 1. Management algorithm for interrupting mother to child transmission of Hepatitis B Virus
HBsAg-
- Consulting service, regular health care
- Newborn
- HBV vaccination 0-1-6 schedule
- Postvaccination serological test

HBsAg+
- Assess Hepatic activity and cirrhosis
- ALT<2×ULN and without cirrhosis
- ALT≥2×ULN and without cirrhosis
- ALT≥5×ULN or with cirrhosis

HBsAg+, Anti-HBs+
- HBV DNA ≥2×10^6 IU/mL
- Monitor ALT, HBV DNA
- Antiviral therapy with TDF or LdT
- Stop therapy after delivery
- Continue therapy after delivery

HBsAg+, Anti-HBs-
- No response
- Re-vaccination 0-1-6 schedule
- Follow-up
- Postvaccination serological test
- Low response
- Medium or high response

Passive+active Immunoprophylaxis
- Postvaccination serological test at 7m
- HBsAg, anti-HBs tests
- HBsAg+, Anti-HBs+
- Mother-to-child transmission
- HBV DNA, ALT
- Follow-up
- Mother
- Newborn
- After Delivery

Before Delivery